
Point One Standard Dev Kit
AH (Heading) Firmware

Application Note
V1.3

6/16/2023



Table of Contents
1. Introduction 3
2. Requirements 4
3. Hardware Configuration 5

3.1 Installation Considerations 5
3.2 Configuring Standard Dev Kit Hardware for Heading 5

3.2.1 Identifying UART Ports 6
3.2.2 Configuring the Modules 7
3.2.3 Linking the UART Ports 7

4. Verifying Functionality Using Software for Heading 9
4.1 Using Point One Desktop Application 9
4.2 Using p1_runner 10
4.3 Using Point One FusionEngine Client Analysis Tools 10

Appendix A. Version History 11
Appendix B. Configuring the Quectel EVK as a Heading Device 13

B.1 Using the Quectel EVK with device_bridge 13
B.2 Using the Quectel EVK with Direct Module Wiring 14

Appendix C. Configuring udev Rules Under Linux 16
Appendix D. Changes from Recommended Configuration 18

PoInt One Standard Dev Kit User Manual AH Supplement 2



1. Introduction
This document includes hardware and operating details specific to the Point One Standard
Development Kit (P1SDK) AH (heading) firmware. It is an addendum to the Point One Standard
Development Kit (P1SDK) User Manual. It is recommended to completely read through the User
Manual for background information and operating instructions for the dev kit before following
this document.

This document provides technical guidance for using the Point One Standard Dev Kit with the
AH firmware to act as a heading measurement engine. This firmware allows an AH secondary
device and GNSS antenna to be used in conjunction with either AM (GNSS-only) or AP (INS)
navigation engine firmware on a primary device in order to determine an orientation solution
independent of platform motion.

During operation, the secondary AH device will produce a 10 Hz FusionEngine
HeadingMeasurement message (11001), detailed in the Point One FusionEngine protocol
(https://github.com/PointOneNav/fusion-engine-client).The output message will be available
from the primary device. This allows for an architecture where the secondary device is only
connected to the primary device if desired.

PoInt One Standard Dev Kit User Manual AH Supplement 3

https://pointonenav.com/files/p1-std-dev-kit-guide/
https://pointonenav.com/files/p1-std-dev-kit-guide/
https://github.com/PointOneNav/fusion-engine-client


2. Requirements

● Hardware
○ 2x Point One Standard Dev Kit (with carrier board) or Quectel EVK
○ 2x L1/L5 GNSS antenna

● Software
○ Standard Dev Kit AH release package containing the latest firmware and tools

■ Latest firmware version available at
https://pointonenav.com/docs/#standard-dev-kit

○ Windows, Linux (kernel v5.9 or later), or Mac OS

● Connectivity
○ The primary module can be connected over USB/Serial to a host computer
○ The secondary module can be connected over USB/Serial to a host computer or

directly to the primary module
○ It is highly recommended to include at least one connection from the secondary

module to the host computer to facilitate software updates in the field

NOTE: DRIVERS ARE REQUIRED FOR WINDOWS AND MACOS

When using Windows, install the CP210x Windows Drivers v6.7.6 or later from
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers. The default universal driver
included with Windows can cause significant unexpected data loss on some machines.

When using Mac, install the CP210x VCP Mac OSX Driver v6.0.0 or later from
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers.

When using Linux, use the CP210x driver included with Linux kernel version 5.9 or later
(included in Ubuntu 21.04 and later). Before 5.9, the driver had an issue that can cause
unexpected data loss on some machines.

PoInt One Standard Dev Kit User Manual AH Supplement 4

https://pointonenav.com/docs/#standard-dev-kit
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers


3. Hardware Configuration

3.1 Installation Considerations
A complete heading solution consists of two devices: a primary navigation engine and
secondary heading measurement engine. Consider the following recommendations when
setting up your equipment:

● The primary and secondary antennas should have a minimum of 0.5 meter distance
baseline. Greater distances between the antennas result in higher angular accuracy.

● The angle is reported as measured from the primary antenna to the secondary antenna.
● It is recommended to use the same type of antenna for both the primary and secondary

if possible.

Note: The setup guide for the Quectel EVK (large green circuit boards) are in Appendix B.

3.2 Configuring Standard Dev Kit Hardware for Heading

When using the Point One Standard Dev Kit, the recommended configuration is to plug both
devices via USB (or directly via mPCIE) into a host computer. Each Dev Kit will enumerate on
the computer as two serial ports, resulting in a total of four new serial ports on the host
computer.

Note that for this setup, corrections must only be applied to the primary device. The
secondary device doesn’t need corrections applied as once the device bridge is created, the
secondary device receives data from the primary device.

PoInt One Standard Dev Kit User Manual AH Supplement 5



3.2.1 Identifying UART Ports
After connecting the devices, the serial port numbers assigned by the host computer
for each of the UARTs on the two devices (total of 4 UARTs).

In Windows, you can retrieve the COM port for your device by opening Windows Device
Manager and expanding the Ports (COM & LPT) Menu:

On Linux or Mac, you can open a terminal and use the ls command to look for devices that
match the /dev/ttyUSB* pattern (or /dev/tty.SLAB_* on Mac):
Linux: ls /dev/ttyUSB*

Mac: ls /dev/ttySLAB_USB*

Note that the /dev/ttyUSB* or COM* numbers may change when the device is unplugged.
On Linux machines, it is highly recommended that you create a udev rule to ensure a
consistent enumeration of the devices in order to prevent confusion between the two devices,
and with other USB to Serial devices you may have. See Appendix C for details.

On most host computers, the first connected device will enumerate as follows:

Windows Linux Mac

UART1 Standard COM Port /dev/ttyUSB1 /dev/tty.SLAB_USBtoUART1

UART2 Enhanced COM
Port

/dev/ttyUSB0 /dev/tty.SLAB_USBtoUART

NOTE: This mapping only applies for the Point One Standard Dev Kit. It DOES NOT apply
for the Quectel EVK. See the Point One Standard Dev Kit User Manual for details.

For the heading function to work properly, data from the primary UART2 must be routed to the
secondary UART2.

PoInt One Standard Dev Kit User Manual AH Supplement 6



Note: The following table includes an example serial port numbering. The commands in the
sections below assume this configuration. Make sure to write down the correct serial port
names on your particular host PC and use those values in the examples below.

Windows Linux Mac

Primary Device
UART1

Standard COM Port
COM1

/dev/ttyUSB1 /dev/tty.SLAB_USBtoUART1

Primary Device
UART2

Enhanced COM Port
COM2

/dev/ttyUSB0 /dev/tty.SLAB_USBtoUART

Secondary
Device UART1

Standard COM Port
COM3

/dev/ttyUSB3 /dev/tty.SLAB_USBtoUART3

Secondary
Device UART2

Enhanced COM Port
COM4

/dev/ttyUSB2 /dev/tty.SLAB_USBtoUART2

3.2.2 Configuring the Modules
The default AM,AP, and AH firmwares come pre configured for heading applications, if using the
configuration laid out below:

If communicating via UART1 to the host computer like shown above, you may want to set
diagnostics on for troubleshooting, and to turn on all additional FusionEngine messages besides
heading by using the commands below:

./bin/config_tool.py --device-port /dev/ttyUSB1 apply uart1 message_rate fe all on -f

./bin/config_tool.py --device-port /dev/ttyUSB1 apply uart1_diagnostics_enabled true

./bin/config_tool.py --device-port /dev/ttyUSB1 save

PoInt One Standard Dev Kit User Manual AH Supplement 7



3.2.3 Linking the UART Ports
Now that you have identified your devices, you can use the device_bridge.py application
(included in p1-host-tools github) to easily link your Primary and Secondary devices.

Windows: device_bridge.exe COM2 COM4

Linux: python3 device_bridge.py /dev/ttyUSB2 /dev/ttyUSB0

Remember that you should change COM2 or /dev/ttyUSB0 above with the value assigned to
your Primary UART2, and you should replace COM4 or /dev/ttyUSB2 with the value assigned to
your Secondary UART 2.

See python3 bin/device_bridge.py --help for additional options and details.

The only requirement is that data is forwarded between Primary UART2 and Secondary UART2
in both directions with minimal data loss and low latency, ideally under 10 milliseconds. Note
that device_bridge.py is an example program. It can be extended to bridge devices over two
host computers over an Ethernet link (TCP/UDP) or over CAN if desired. Additionally, the
boards can be directly wired if desired.

Congratulations, you have successfully configured the devices for heading operation. This will
continue to run in the background while you are validating functionality and need devices to
communicate. See Section 4 for working with the Point One Desktop Application to verify correct
installation.

PoInt One Standard Dev Kit User Manual AH Supplement 8

https://github.com/PointOneNav/p1-host-tools


4. Verifying Functionality Using Software for
Heading
After following Section 3.2.3 to enable the FusionEngine HeadingMeasurement output
message, you can easily verify heading operation using either the Point One Desktop
Application (available at https://pointonenav.com/docs), or using the p1_display and related
analysis tools in the FusionEngine repository
(https://github.com/PointOneNav/fusion-engine-client).

4.1 Using Point One Desktop Application
1. Ensure you have followed Section 3 to configure your Primary device correctly.
2. Configure the Desktop Application according to Section 5 of the Point One Standard Dev

Kit User Manual and connect to your Primary device via UART1 and apply corrections.
3. Repeat step 2 to connect to your Secondary device via UART1, but DO NOT apply

corrections.
4. In an open sky environment, you should see a “Heading” section appear in the tray as

indicated by the yellow arrow below while looking at the Primary device. This heading
display shows the output of the dual antenna heading solution computed by the AH
module.

PoInt One Standard Dev Kit User Manual AH Supplement 9

https://pointonenav.com/docs
https://github.com/PointOneNav/fusion-engine-client


4.2 Using p1_runner
1. Similar to above, only the primary needs to have corrections enabled, either via NTRIP

or Polaris API
2. Ensure that you are still running device_bridge.py script from Section 3.2.3
3. To log and your navigation using p1_runner, run command below:

a. NTRIP:
i. ./bin/runner.py --device-port /dev/ttyUSB1 --ntrip

http://169.125.0.1:2101,my_mountpoint,my_username,my_password

b. Polaris:
i. ./bin/runner.py --device-port /dev/ttyUSB1 --polaris abcd1234

4. User can log secondary device(via UART1) if desired, but not required

4.3 Using Point One FusionEngine Client Analysis Tools
All Point One devices run the FusionEngine core libraries. One of the benefits of this library is
that it comes with free, open source tools to inspect the performance of the engine by analyzing
a log file. The repository used here can be downloaded from
https://github.com/PointOneNav/fusion-engine-client, or can be installed into your Python
environment using pip. See https://github.com/PointOneNav/fusion-engine-client#python for
details.

In order to analyze a log from Point One Desktop, you must first record a log file from the
primary device. This can be done by simply pressing the record button in the Point One
Desktop application:

Alternatively, you can record a log by using the p1_runner tool included in the firmware release.
The details of running this script are available in Section 4.2.

Once you have recorded a log file, you can generate plots using the following command:

p1_display <log_guid>

Where the <log_guid> field represents the first 4 or more letters/numbers of the log folder.
When capturing a log in Point One Desktop, this ID will be displayed in the tray or in the table on
the Logs page. You can also supply the entire path to the log file or its parent directory if you
prefer.

PoInt One Standard Dev Kit User Manual AH Supplement 10

https://github.com/PointOneNav/fusion-engine-client
https://github.com/PointOneNav/fusion-engine-client#python


This application will generate a series of HTML based plots. The Measurements: Heading plot
displays the output from the secondary device's heading measurements and additional details:

PoInt One Standard Dev Kit User Manual AH Supplement 11



Appendix A. Version History
Note: This section lists changes to this document only. For a list of changes for AH firmware
updates, see the Point One Standard Dev User Manual.

Version 1.2 (2023-6-16)
● Set default configuration to be connecting both devices via UART2

Version 1.2 (2023-5-1)
● Added 4.2 for validation using p1_runner
● Clarified that RTK corrections should only be sent to the primary (AM/AP) device, not the

secondary (AH) device
● 10 Hz output now supported as of AH 0.3.2 release

Version 1.1 (2023-3-13)
● Added Appendix D, for operation with different UART orientations

Version 1.0 (2023-2-17)
● Initial version of this document, corresponding with the AH 0.1.0 release.

PoInt One Standard Dev Kit User Manual AH Supplement 12



Appendix B. Configuring the Quectel EVK as a
Heading Device

B.1 Using the Quectel EVK with device_bridge

The Quectel EVK can also be used with the device_bridge.py software and wired similarly to
the Point One Standard Dev Kit. However, note that the mapping of the UARTs to the
Standard/Enhanced port names and the tty numbers is opposite that of the Standard Dev Kit.

For the Quectel EVK Only:

Windows Linux Mac

UART1 Enhanced COM
Port

/dev/ttyUSB0 /dev/tty.SLAB_USBtoUART

UART2 Standard COM Port /dev/ttyUSB1 /dev/tty.SLAB_USBtoUART1

PoInt One Standard Dev Kit User Manual AH Supplement 13



B.2 Using the Quectel EVK with Direct Module Wiring

The Quectel EVK exposes the raw serial data from each module which allows a direct wiring
configuration. This can also be realized in a customer design when directly using modules on a
custom PCB. It is worth pointing out the signal levels are TTL between modules, so care should
be taken to limit the length of these lines or to use a signal level converter (i.e. TTL/RS232).

PoInt One Standard Dev Kit User Manual AH Supplement 14



To directly wire the EVKs, follow these steps:

1) On the Primary EVK, remove the jumpers on the USB_TXD2 and USB_RXD2 lines and
replace them with jumper cables (not provided).

2) On the Secondary EVK, remove the jumpers on the USB_TXD2 and USB_RXD2 lines.
Connect the USB_TXD2 from the Primary to the USB_RXD2 on the Secondary. Connect
the USB_RXD2 from the Primary to the USB_TXD2 on the Secondary.

Note that this modification will disable host computer USB access to UART2 on the Primary and
UART2 on the Secondary.

Now follow Section 4 to verify functionality.

PoInt One Standard Dev Kit User Manual AH Supplement 15



Appendix C. Configuring udev Rules Under Linux
In Linux, it is possible to configure the udev subsystem to automatically detect your devices
each time they are connected, and then assign consistent device names to them. For example,
instead of /dev/ttyUSB3, which may change when you unplug the device, you can use udev to
create a recognizable name such as /dev/p1sdk-secondary-uart1 that will not change when
the device is unplugged or the computer restarts.

1. Run udevadm monitor to monitor activity when a serial (TTY) device is plugged in. We'll
use this to determine the path and serial number for each device.
udevadm monitor -p -s tty

2. Unplug your primary Point One Standard Dev Kit (or Quectel EVK) devices and plug it
back in.

3. You should see a series of prints. The last one will look similar to the following:
UDEV [4430.413678] add /devices/.../ttyUSB3 (tty)

…
SUBSYSTEM=tty

DEVNAME=/dev/ttyUSB3

…
ID_MODEL=CP2105_Dual_USB_to_UART_Bridge_Controller

…
ID_SERIAL_SHORT=00D38F50

4. Write down the serial number for the device, highlighted in bold above.
5. In a text editor, create a file named /etc/udev/rules.d/99-p1sdk-primary.rules

with the following contents, replacing the highlighted serial number with the value noted
above.

Note that you will need to open the text editor with sudo in order to enable write
permission for the udev rules directory.

SUBSYSTEM=="tty", ATTRS{idVendor}=="10c4", ATTRS{idProduct}=="ea70",

ATTRS{serial}=="00D38F50", GOTO="configure"

GOTO="end"

LABEL="configure"

ATTRS{bInterfaceNumber}=="00", SYMLINK+="p1sdk-primary-uart2"

ATTRS{bInterfaceNumber}=="01", SYMLINK+="p1sdk-primary-uart1"

LABEL="end"

6. You can now refer to your device as /dev/p1sdk-primary-uart1 (or uart2) for all tools,
including device_bridge.py and config_tool.py.

7. Repeat these steps for your secondary device, replacing "primary" with "secondary" in
the script where highlighted above.

PoInt One Standard Dev Kit User Manual AH Supplement 16



Note that for a Quectel EVK, the interface and UART numbering is reversed as follows:
ATTRS{bInterfaceNumber}=="00", SYMLINK+="quectel-evk-primary-uart1"

ATTRS{bInterfaceNumber}=="01", SYMLINK+="quectel-evk-primary-uart2"

PoInt One Standard Dev Kit User Manual AH Supplement 17



Appendix D. Changes from Recommended
Configuration
This document details the process of connecting the devices via UART2 of the primary, to
UART1 of the secondary device. Although this is the recommended set up, it is not required, but
there are just a few considerations that need to be taken.

Regarding the primary device, the UART that is connected to the host computer either via Point
One Desktop Application or p1_runner, must have both the Fusion Engine heading message
and diagnostics enabled, using the command below:

./bin/config_tool.py --device-port /dev/(Primary UART to host computer) apply uart(1 or

2)_message_rate fe heading on -f

./bin/config_tool.py --device-port /dev/(Primary UART to host computer) apply uart(1 or

2)_diagnostics_enabled true

./bin/config_tool.py --device-port /dev/(Primary UART to host computer) save

Still looking at the primary device, the UART that is connected and transmits data to the
secondary device must have diagnostic message output enabled. In order to do so, use the
commands below:

./bin/config_tool.py --device-port /dev/(Primary UART to Secondary Device) apply uart(1 or

2)_diagnostics_enabled true

./bin/config_tool.py --device-port /dev/(Primary UART to Secondary Device) save

Turning our attention to the secondary device, the UART that is connected to the host computer
either via Point One Desktop Application or p1_runner, must have both the Fusion Engine
heading message and diagnostics enabled, using the command below:

./bin/config_tool.py --device-port /dev/(Secondary UART to host computer) apply uart(1 or

2)_message_rate fe heading on -f

./bin/config_tool.py --device-port /dev/(Secondary UART to host computer) apply uart(1 or

2)_diagnostics_enabled true

PoInt One Standard Dev Kit User Manual AH Supplement 18



./bin/config_tool.py --device-port /dev/(Secondary UART to host computer) save

Still looking at the secondary device, the UART that is connected and receives data from the
primary device must have diagnostics disabled. In order to do so, use the commands below:

./bin/config_tool.py --device-port /dev/(Secondary UART from Primary Device) apply uart(1 or

2)_diagnostics_enabled false

./bin/config_tool.py --device-port /dev/(Secondary UART from Primary Device) save

PoInt One Standard Dev Kit User Manual AH Supplement 19


